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Exercise 1. (Chapter 3.3, Exercise 34: Euler Equations.) An equation of the form

d2 d
tzd—3+o¢td—f+ﬁg:0, t>0,

where o and (3 are real constants, is called an Euler equation.
1. Let x = Int and calculate dy/dt and d?y/dt? in terms of dy/dx and d?y/dx>.

2. Use the results of the previous question to transform the equation into:

If y1(x) and ya(x) form a fundamental set of solutions of the new equation, then
yi(Int) and yo(Int) form a fundamental set of solutions of the original equation.

Exercise 2. (Chapter 7.1, Exercise 7) Systems of first order equations can sometimes
be transformed into a single equation of higher order. Consider the system:

X] ==2x1+ %2, xh=x1—2x).

1. Solve the first equation for x, and substitute into the second equation, thereby
obtaining a second order equation for x;. Solve this equation for x; and then
determine x; also.

2. Find the solution of the given system that also satisfies the initial conditions
x1(0) =0, x2(0) = 3.
We denote by y: t — (x1(t),x2(t)) the associated parametric curve in the x;x;-
plane.

3. Study the existence of an asymptotic to y as t — 400, and of points with hori-
zontal or vertical tangents. Use these observations to plot the solution curve in
the x1x2-plane.



Exercise 3. Solve the (Clairaut) equation:

y(x) =xy’ + (y)> 1)

Exercise 4. Find a curve that passes through the point (1,1) and perpendicular to all
curves of the family:
re:x*+y*=C (CeR). 2)

Find all smooth curves that intersect any curve of the family (I'c)cer at the right
angle.



Solution 1

1. Considering the variable change x = Int, we have t = e*. At the beginning, we
view y = y(t) as a function of t. Right now, we consider y =y(e*) as a function

of x. Then the derivative dy =y’(e¥)e* = y/(t)t = t . Besides, the second
order derivative T»:Zi = % =y (eX)e®* +y'(eX)e* = tzﬁ‘% +t¢"— Thus,

in terms of dy/dx and d%y/dx?, we have dy/dt = t~!dy/dx = e Xdy/dx and
d?y/dt? = t72(d%y/dx* — dy/dx) = e 2*(d?’y/dx?® — dy/dx)

2
2. With the result in the previous equation, we know that % —du _ 2 ‘31;-5’ and

% = t%. Thus, under the change of variable, the equation could be rewritten

as
dZ

Y dy
o2 + (o — 1)d + By

This is a homogeneous second order linear differential equation. We know that
if 11 and 5 are two roots of the characteristic polynomial 12 + (« — 1)t + 3 = 0.
Then the general solution is

(x) = Ae™* +Be™*, 11 #Tm
Y Ae™* +Bxe™™, 11 =1

Rechange the variable x = Int, we have the general solution of y(t) is given by

(t) = At + Bt"?, T #£ T
YW= A+ Bt"'lnt, 11 =12

Thus, if y;(x) and yz(x) form a fundamental set of solutions of the new equation,
then y;(Int) and y(Int) form a fundamental set of solutions of the original
equation.

Solution 2:

1. From the first equation,
X2 = X1 + 2% (%)

and differentiating this, we get
Xy = X1 +2x1.
Now substitute these expressions for x,, x; into the second equation:
X1 +2x1 =x1 —2(x] +2x1) = —2x{ — 3x1.
After moving all the terms to one side, this is

X1’ +4x1 +3x; =0.



This is a second-order homogeneous linear ODE with constant coefficients. Its
characteristic polynomial is M 4+4r+3 = (r+1)(r+3) = 0 with roots 1} = —1,
T2 = —3, so the general solution is

x1(t) = cre "t + cpe %,
hence
X1 (t) = —cre” t —3coe 3t
Putting this back into (x), we get
x2(t) = —cre P —3coe 3t +2(cre P+ cpe ) =|cret —cpe 3t
. We have the system of equations:

x1(0) =c1+c,=0

x(0)=c1—c=3
which has the unique solution ¢; = 3/2, c; = —3/2. Now if we write (x1(t), x2(t))

as a vector,

-
x2(t)

. Ast — oo,

NN W

e t—3e 3t _ ge*Zt et —e ") _ 32t sinh t
e t+3e %t 2 et +et cosh t

x1(t)\ 3 5 (et
x2(t) — 3¢ et

This is the asymptotic behavior. The derivatives are

X (1)) ée_Zt —e '+ 3t

x(t)) 2 —e t—3e 3t
A horizontal tangent line is characterized by x;(t) = 0. This equation is equiva-
lent to e2* = —3, so it does not have solutions: there are no such tangents.

A vertical tangent line is characterized by x{(t) = 0, which is equivalent to the
equation e?t = 3, and has the unique solution t = In %

The solution curve and its asymptote are plotted on Figure 1.
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Figure 1: Plot of the parametric curve y in Problem 2 (blue), and asymptote as t — +oc0
(red dashed).

Solution 3:
We consider the general Clairaut’s equation which is:
y =xy' +f(y)

In our case, f(y') = (y')?

To solve Clairaut’s equation, one differentiates with respect to x, yielding
y/ :y/ +Xy// —f—fl (y/) y//
SO
e+ (y)]y" =0

Hence, either
y// — 0

or
x+f (y') =x+2y =0

In the former case, C =y’ for some constant C. Substituting this into Clairaut’s
equation, one obtains the family of straight line functions given by

y(x) = Cx + f(C) = Cx + C?

the so-called general solution of Clairaut’s equation.

The latter case, y = —XTZ + C, substituting back into the Clairaut’s equation, we see
C=0
2
Y= 4
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Figure 2: Solution curves for the Clairaut equation. The general solutions are the gray
lines, the singular solution is the blue curve.

defines only one solution y(x), the so-called singular solution, whose graph is the
envelope of the graphs of the general solutions (see Figure 2).

Solution 4

Fix one C € R, the tangent direction at (x,y) is given by (1, dy/dx). To find it, we
take derivatives of x* +y* = C with respect to x

So for the curve perpendicular to it, the tangent direction needs to be (1, z—z). We at a
point (x,y) it satisfies the equation

dy vy

dx x3°
Integrate to get, y > = x 2 + C and it passes through the point (1,1) implies C =0

andy =xory = —x.
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Figure 3: The family of curves {I'c}cer (in red) and the orthogonal family of curves
(in blue).



