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Exercise 1. (Chapter 3.3, Exercise 34: Euler Equations.) An equation of the form

t2d
2y

dt2 +αt
dy

dt
+βy = 0, t > 0,

where α and β are real constants, is called an Euler equation.

1. Let x = ln t and calculate dy/dt and d2y/dt2 in terms of dy/dx and d2y/dx2.

2. Use the results of the previous question to transform the equation into:

d2y

dx2 + (α− 1)
dy

dx
+βy = 0.

If y1(x) and y2(x) form a fundamental set of solutions of the new equation, then
y1(ln t) and y2(ln t) form a fundamental set of solutions of the original equation.

Exercise 2. (Chapter 7.1, Exercise 7) Systems of first order equations can sometimes
be transformed into a single equation of higher order. Consider the system:

x′1 = −2x1 + x2, x′2 = x1 − 2x2.

1. Solve the first equation for x2 and substitute into the second equation, thereby
obtaining a second order equation for x1. Solve this equation for x1 and then
determine x2 also.

2. Find the solution of the given system that also satisfies the initial conditions
x1(0) = 0, x2(0) = 3.
We denote by γ : t 7→ (x1(t), x2(t)) the associated parametric curve in the x1x2-
plane.

3. Study the existence of an asymptotic to γ as t → +∞, and of points with hori-
zontal or vertical tangents. Use these observations to plot the solution curve in
the x1x2-plane.
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Exercise 3. Solve the (Clairaut) equation:

y(x) = xy ′ + (y ′)2. (1)

Exercise 4. Find a curve that passes through the point (1, 1) and perpendicular to all
curves of the family:

ΓC : x4 + y4 = C (C ∈ R). (2)

Find all smooth curves that intersect any curve of the family (ΓC)C∈R at the right
angle.
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Solution 1

1. Considering the variable change x = lnt, we have t = ex. At the beginning, we
view y = y(t) as a function of t. Right now, we consider y = y(ex) as a function
of x. Then the derivative dy

dx = y ′(ex)ex = y ′(t)t = tdydt . Besides, the second
order derivative d2y

dx2 =
dy ′(ex)ex

dx = y ′′(ex)e2x + y ′(ex)ex = t2 d2y
dt2 + tdydt . Thus,

in terms of dy/dx and d2y/dx2, we have dy/dt = t−1dy/dx = e−xdy/dx and
d2y/dt2 = t−2(d2y/dx2 − dy/dx) = e−2x(d2y/dx2 − dy/dx)

2. With the result in the previous equation, we know that d2y
dx2 − dy

dx = t2 d2y
dt2 and

dy
dx = tdydt . Thus, under the change of variable, the equation could be rewritten
as

d2y

dx2 + (α− 1)
dy

dx
+βy = 0.

This is a homogeneous second order linear differential equation. We know that
if r1 and r2 are two roots of the characteristic polynomial r2 + (α− 1)r+ β = 0.
Then the general solution is

y(x) =

{
Aer1x +Ber2x, r1 ̸= r2
Aer1x +Bxer1x, r1 = r2

Rechange the variable x = lnt, we have the general solution of y(t) is given by

y(t) =

{
Atr1 +Btr2 , r1 ̸= r2
Atr1 +Btr1lnt, r1 = r2

Thus, if y1(x) and y2(x) form a fundamental set of solutions of the new equation,
then y1(lnt) and y2(lnt) form a fundamental set of solutions of the original
equation.

Solution 2:

1. From the first equation,
x2 = x ′

1 + 2x1 (⋆)

and differentiating this, we get

x ′
2 = x ′′

1 + 2x ′
1.

Now substitute these expressions for x2, x ′
2 into the second equation:

x ′′
1 + 2x ′

1 = x1 − 2(x ′
1 + 2x1) = −2x ′

1 − 3x1.

After moving all the terms to one side, this is

x ′′
1 + 4x ′

1 + 3x1 = 0.
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This is a second-order homogeneous linear ODE with constant coefficients. Its
characteristic polynomial is r2 + 4r+ 3 = (r+ 1)(r+ 3) = 0 with roots r1 = −1,
r2 = −3, so the general solution is

x1(t) = c1e
−t + c2e

−3t,

hence
x ′

1(t) = −cte
−t − 3c2e

−3t.

Putting this back into (⋆), we get

x2(t) = −cte
−t − 3c2e

−3t + 2(c1e
−t + c2e

−3t) = c1e
−t − c2e

−3t

2. We have the system of equations:{
x1(0) = c1 + c2 = 0
x2(0) = c1 − c2 = 3

which has the unique solution c1 = 3/2, c2 = −3/2. Now if we write (x1(t), x2(t))
as a vector,(

x1(t)
x2(t)

)
=

(3
2e

−t − 3
2e

−3t

3
2e

−t + 3
2e

−3t

)
=

3
2
e−2t

(
et − e−t

et + e−t

)
= 3e−2t

(
sinh t

cosh t

)
3. As t → ∞, (

x1(t)
x2(t)

)
=

3
2
e−2t

(
et

et

)
This is the asymptotic behavior. The derivatives are(

x ′
1(t)

x ′
2(t)

)
=

3
2
e−2t

(
−e−t + 3e−3t

−e−t − 3e−3t

)
A horizontal tangent line is characterized by x ′

2(t) = 0. This equation is equiva-
lent to e2t = −3, so it does not have solutions: there are no such tangents.

A vertical tangent line is characterized by x ′
1(t) = 0, which is equivalent to the

equation e2t = 3, and has the unique solution t = ln 3
2 .

The solution curve and its asymptote are plotted on Figure 1.
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Figure 1: Plot of the parametric curve γ in Problem 2 (blue), and asymptote as t → +∞
(red dashed).

Solution 3:
We consider the general Clairaut’s equation which is:

y = xy′ + f(y′)

In our case, f(y′) = (y′)2

To solve Clairaut’s equation, one differentiates with respect to x, yielding

y′ = y′ + xy′′ + f ′
(
y′)y′′

so [
x+ f ′

(
y′)]y′′ = 0

Hence, either
y′′ = 0

or
x+ f ′

(
y′) = x+ 2y′ = 0

In the former case, C = y′ for some constant C. Substituting this into Clairaut’s
equation, one obtains the family of straight line functions given by

y(x) = Cx+ f(C) = Cx+C2

the so-called general solution of Clairaut’s equation.
The latter case, y = −x2

4 +C, substituting back into the Clairaut’s equation, we see
C = 0

y = −
x2

4
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Figure 2: Solution curves for the Clairaut equation. The general solutions are the gray
lines, the singular solution is the blue curve.

defines only one solution y(x), the so-called singular solution, whose graph is the
envelope of the graphs of the general solutions (see Figure 2).

Solution 4
Fix one C ∈ R, the tangent direction at (x,y) is given by (1,dy/dx). To find it, we

take derivatives of x4 + y4 = C with respect to x

y ′ = −
x3

y3 .

So for the curve perpendicular to it, the tangent direction needs to be (1, y3

x3 ). We at a
point (x,y) it satisfies the equation

dy

dx
=

y3

x3 .

Integrate to get, y−2 = x−2 +C and it passes through the point (1, 1) implies C = 0
and y = x or y = −x.
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Figure 3: The family of curves {ΓC}C∈R (in red) and the orthogonal family of curves
(in blue).
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